An Empirical Method to Improve Edit-distance Parameters for a Nearest-neighbor-based Classiication Task
نویسنده
چکیده
This paper describes a method for automatically improving the parameters of the edit distance used in a given nearest-neighbor pattern classiication task. The method uses a simple self-consistent procedure which assigns costs to the basic editing operations according to their discriminative power. The discriminative powers of operations are deened based on the statistics of their use when a prototype set is used to classify itself. The parameters obtained are not optimal but may be obtained easily and the experimental evidence |a handwritten numeral classiication task| shows that the performance of the classiier may be improved easily by using the proposed method on the prototype set.
منابع مشابه
Extending Local Learners with Error-correcting Output Codes Extending Local Learners with Error-correcting Output Codes
Error-correcting output codes (ECOCs) represent classes with a set of output bits, where each bit encodes a binary classiication task corresponding to a unique partition of the classes. Algorithms that use ECOCs learn the function corresponding to each bit, and combine them to generate class predictions. ECOCs can reduce both variance and bias errors for multiclass classiication tasks when the ...
متن کاملEdit distance-based kernel functions for structural pattern classification
A common approach in structural pattern classification is to define a dissimilarity measure on patterns and apply a distance-based nearest-neighbor classifier. In this paper, we introduce an alternative method for classification using kernel functions based on edit distance. The proposed approach is applicable to both string and graph representations of patterns. By means of the kernel function...
متن کاملFinding Significant Points for a Handwritten Classification Task
When objects are represented by curves in a plane, highly useful information is conveyed by significant points. In this paper, we compare the use of different mobile windows to extract dominant points of handwritten characters. The error rate and classification time using an edit distance based nearest neighbour search algorithm are compared for two different cases: string and tree representation.
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007